按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
稳樟绞敌兄稀D诩醣拘且蝗罩敌形宦剩磐吕肭笏贰⑼
求三星退冲时刻,视本星黄道实行与太阳实行相距将半周,为退冲本日;已过半周,为退冲次日。求时刻之法,以太阳一日之实行与本星一日之实行相加为一率,馀同前。
求同度时刻,以两星一日之实行相加减两星同行则减。一顺一逆则加。为一率,刻下分为二率,两星相距为三率,求得四率为距子正之分数,以时刻收之即得。五星并同。
金星用数
每日平行三千五百四十八秒,小馀三三0五一六九。
最高日行十分秒之二又二七一0九五。
伏见每日平行二千二百十九秒,小馀四三一一八八六。
本轮半径二十三万一千九百六十二。
均轮半径八万八千八百五十二。
次轮半径七百二十二万四千八百五十。
次轮面与黄道交角三度二十九分。
金星平行应初宫初度二十分十九秒十八微。
最高应六宫一度三十三分三十一秒四微。
伏见应初宫十八度三十八分十三秒六微。
水星用数
每日平行与金星同。
最高日行十分秒之二又八八一一九三。
伏见每日平行一万一千一百八十四秒,小馀一一六五二四八。
本轮半径五十六万七千五百二十三。
均轮半径一十一万四千六百三十二。
次轮半径三百八十五万。
次轮心在大距,与黄道交角五度四十分。
次轮心在正交,与黄道交角北五度五分十秒,其交角较三十四分五十秒。与大距交角相较,后仿此。南六度三十一分二秒,其交角较五十一分二秒。
次轮心在中交,与黄道交角北六度十六分五十秒,其交角较三十六分五十秒。南四度五十五分三十二秒,其交角较四十四分二十八秒。
水星平行应与金星同。
最高应十一宫三度三分五十四秒五十四微。
伏见应十宫一度十三分十一秒十七微,馀见日躔。
推金、水星法
求天正冬至,同日躔。
求金、水本星平行,同土、木、火星。
求金、水最高行,同土、木、火星。
求金、水伏见平行,同本星平行。
求金、水正交行,置本星最高平行,金星减十六度,水星加减六宫,即得。
求金星初实行,用本星引数求初均数,以加减本星平行,为本星初实行。及求次轮心距地心线,并同土、木、火星。
求水星初实行,用平三角形,以本轮半径为一边,均轮半径为一边,以引数三倍之为所夹之外角,过半周者与全周相减,用其馀。求其对角之边,并对均轮半径之角。又用平三角形,以本天半径为大边,以对角之边为小边,以对均轮半径之角与均轮心距最卑度相加减,引数不及半周者,与半周相减;过半周者,减去半周,即均轮心距最卑度。加减之法,视三倍引数不过半周则加,过半周则减。为所夹之角,求得对小边之角为初均数,并求得对角之边为次轮心距地心线。以初均数加减水星平行,引数初宫至五宫为减,六宫至十一宫为加。得水星初实行。
求金、水伏见实行,置本星伏见平行,加减本星初均数,引数初宫至五宫为加,六宫至十一宫为减。即得。
求金、水黄道实行,用平三角形,以本星次轮心距地心线为一边,本星次轮半径为一边,本星伏见实行为所夹之外角,过半周者与全周相减,用其馀。求得对次轮半径之角为次均数,并求得对角之边为本星距地心线。以次均数加减初实行,伏见实行初宫至五宫为加,六宫至十一宫为减。得本星黄道实行。
求金、水距次交实行,置本星初实行,减本星正交行,为距交实行。与本星伏见实行相加,得本星距次交实行。
求金、水视纬,以本天半径为一率,本星次轮与黄道交角之正弦为二率,金星交角惟一,水星交角则时时不同,须求实交角用之,法详后。本星距次交实行之正弦为三率,求得四率为正弦,检表得本星次纬。又以本天半径为一率,本星次纬之正弦为二率,本星次轮半径为三率,求得四率为本星距黄道线。乃以本星距地心线为一率,本星距黄道线为二率,本天半径为三率,求得四率为正弦,检表得本星视纬,随定其南北。初宫至五宫为黄道北,六宫至十一宫为黄道南。
求水星实交角,以半径一千万为一率,交角较化秒为二率,距交实行九宫至二宫用正交交角较,三宫至八宫用中交交角较,仍视其南北用之。距交实行之正弦为三率,求得四率为交角差。置交角,用交角之法与用交角较同。以交角差加减之,距交实行九宫至二宫,星在黄道北则加,南则减;三宫至八宫反是。得实交角。
求黄道宿度及纪日,同日躔。
求交宫时刻,同月离。
求金、水晨夕伏见定限度,本星实行与太阳实行同宫同度为合伏,合伏后距太阳渐远;夕见西方顺行,顺行渐迟,迟极而退为留退。初退行渐近太阳,则夕不见,复与太阳同度为合退伏。自是又渐远太阳,晨见东方。仍退行渐迟,迟极而顺为留顺。初顺行渐疾,复近太阳,以至合伏,为晨不见。其伏见限度,金星为五度,水星为十度。其求定限度之法,与土、木、火星同,视本星距太阳度与定限相近。如在合伏前某日,即为某日晨不见;合伏后某日,即为某日夕见;合退伏前某日,即为某日夕不见;合退伏后某日,即为某日晨见。
求金、水合伏时刻,视本星实行将及太阳实行为合伏本日,已过太阳实行为合伏次日。求时刻之法,与月离求朔、望时刻之法同。
求金、水合退伏时刻,视太阳实行将及本星实行为合退伏本日,已过本星实行为合退伏次日。求时刻之法,与土、木、火星求退冲时刻之法同。
恆星用数
见日躔。
推恆星法求黄道经度,以距康熙壬子年数减一,得积年岁差,乘之。收为度分,与康熙壬子年恆星表经度相加,得各恆星本年经度。求赤道经纬度,用弧三角形,以星距黄极为一边,黄赤大距为一边,本年星距夏至前后为所夹之角,求得对星距黄极边之角。夏至前用本度,夏至后与周天相减用其馀度。自星纪宫初度起算,为各恆星赤道经度。又求得对原角之边,与象限相减,馀为赤道纬度。减象限为北,减去象限为南。
求中星,以刻下分为一率,本日太阳实行与次日太阳实行相减馀为二率,以所设时刻化分为三率,求得四率,与本日太阳实行相加,得本时太阳黄道经度。用弧三角形,推得太阳赤道经度,以所设时刻变赤道度一时变为十五度,一分变为十五分,一秒变为十五秒。加减半周,不及半周则加半周,过半周则减半周。得本时太阳距午后度。与太阳赤道经度相加,得本时正午赤道经度。视本年恆星赤道经度同者,即为中星。
……
国学网站推出后一页前一页回目录回首页后一页前一页回目录回首页志二十四
时宪五
△康熙甲子元法下
月食用数
朔策二十九日五三0五九三。
望策十四日七六五二九六五。
太阳平行,朔策一十万四千七百八十四秒,小馀三0四三二四。
太阳引数,朔策一十万四千七百七十九秒,小馀三五八八六五。
太阴引数,朔策九万二千九百四十秒,小馀二四八五九。
太阴交周,朔策十一万0四百十四秒,小馀0一六五七四。
太阳平行,望策十四度三十三分十二秒0九微。
太阳引数,望策十四度三十三分0九秒四十一微。
太阴引数,望策六宫十二度五十四分三十秒0七微。
太阴交周,望策六宫十五度二十分0七秒。
太阳一小时平行一百四十七秒,小馀八四七一0四九。
太阳一小时引数一百四十七秒,小馀八四0一二七。
太阴一小时引数一千九百五十九秒,小馀七四七六五四二。
太阴一小时交周一千九百八十四秒,小馀四0二五四九。
月距日一小时平行一千八百二十八秒,小馀六一二一一0八。
太阳光分半径六百三十七。
太阴实半径二十七。
地半径一百。
太阳最高距地一千0十七万九千二百0八,与地半径之比例,为十一万六千二百。
太阴最高距地一千0十七万二千五百,与地半径之比例,为五千八百一十六。
朔应二十六日三八五二六六六。
首朔太阳平行应初宫二十六度二十分四十二秒五十七微。
首朔太阳引数应初宫十九度一十分二十七秒二十一微。
首朔太阴引数应九宫十八度三十四分二十六秒十六微。
首朔太阴交周应六宫初度三十分五十五秒十四微,馀见日躔、月离。
推月食法
求天正冬至,同日躔。
求纪日,以天正冬至日数加一日,得纪日。
求首朔,先求得积日同月离。置积日减朔应,得通朔。上考则加。以朔策除之,得数加一为积朔。馀数转减朔策为首朔。上考则除得之数即积朔,不用加一。馀数即首朔,不用转减。
求太阴入食限,置积朔,以太阴交周朔策乘之,满周天秒数去之,馀为积朔太阴交周。加首朔太阴交周应,得首朔太阴交周。上考则置首朔交周应减积朔交周。又加太阴交周望策,再以交周朔策递加十三次,得逐月望太阴平交周。视某月交周入可食之限,即为有食之月。交周自五宫十五度0六分至六宫十四度五十四分,自十一宫十五度0六分至初宫十四度五十四分,皆可食之限。再于实交周详之。
求平望,以太阴入食限月数与朔策相乘,加