友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
热门书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

格式塔心理学原理-第71章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



如何适合我们的理论将在后面两章加以讨论;在我们讨论的这一点上,就其本身而言,我们必须把它视作一个场物体。一个点的运动是两个物体的彼此移置,也就是说,这两个物体是点和自我。实际上,当场内有两点时,我们需要处理三个物体。然而,邓克尔成功地排除了自我的影响,他通过缓慢的速度和小的偏移来进行研究,结果使它们对自我来说成为阈下的了,或者是阈上的了。如果它们是阈下的话,那么,仅仅两点的相对移置便具效果;如果它们成为阈上的话,那么便会出现新的结果。作为第三物体的自我可以如此强烈地与两点中的一点结合起来,致使它参与到它的运动中去。这种结合是通过凝视来达到的。一个被凝视的物体并不改变它与自我的视觉体系的关系,不论它在客观上是运动的还是静止的。因此,在用点来进行的实验中,对客观上静止的点进行凝视的被试看到该点处于运动中,并同时体验他们自己眼睛的活动(邓克尔,P.201)。如果两个物体之一是一个将另一个点封闭起来的矩形,而且,如果这个非运动的点被注视着,那么,“一个人关于静止的自我印象便丧失;空间水平成为不稳定的了,甚至会发生晕头转向现象,即一个人觉得自己的身体僵硬地与那个点相联系,沿着那个(在现象上或多或少静止的)矩形移动”(邓克尔,p.206)。 
    因此,“自我”的表现如同任何其他场物体一样,这种观点可由两种普通的观察来证实:月亮看上去从浮云中穿过;当我们站在桥上,凝视着水中的一座桥墩时,我们似乎在溯流而上。这两种情形的道理是一样的,被闭合的物体载着运动,而第二个例子中的自我则参与了它的运动,因为通过凝视自我牢牢地与它结合起来了。 
    同一性:过程的融合 
    现在是陈述我们理论中迄今为止一直隐藏着的一个方面的时候了。我们把运动知觉解释成是由于过程模式的离位(dislo-cation)。如果一个物体被看作处于运动之中,我们便假设,与它的知觉相一致的过程分布(process distribution)依照其他过程分布而被移置。这意味着,在可见运动的过程中,与一个物体相一致的过程分布在动力上保持同一,尽管它在其他过程分布的场内进行转移。由于我们迄今为止只在静止场内处理统一和分离,也就是说,不涉及时间,因此,改变其位置的一个过程的同一性(identity)便是一个新问题,正如我们将在后面看到的那样,它充满了有意义的结果。我们能以下列方式表述这个问题:如果一个光点穿过视网膜,那么,新的锥状细胞便会不断受到刺激,新的过程便不断地传入视网膜中心。锥状细胞是一些分离的结构,它们以具有可变强度的精细镶嵌遍布于视网膜上;因此,一个连续移动的光点会根据光点经过的雄状细胞数目引起分离的和有限的神经兴奋。在有些地方,这些连续的分离的兴奋肯定会变成一种连续过程,如果一个物体的移置发生的话;也就是说,始于锥状细胞中的兴奋不能彼此保持分离,而必须融合(fused)起来。由于在我们的例子中,它们在性质上和接近性上是相等的,因此这些神经过程将以巨大力量相互吸引,以致于它们的最终融合可从我们的前提中推论出来。 
    然而,我们可以设法改变这些条件,并且观察这些改变将对过程的融合产生哪些影响。可以改变的第一个因素是过程之间的距离。让图83中的A和Z分别代表两个终端的锥状细胞,它们被从左到右运动着的一个光点所刺激, 而两者之间的一些点,如i1、i2……等等,均代表中间的锥状细胞。由此,网膜边缘发生的事件,即最终引起可见运动过程的事件,能以这种方式来予以描述。首先,在很短时间里(eA)A将受到刺激;然后,是一个很短的间歇(PA-i1),在这很短的间歇中,没有任何刺激发生;接着是刺激i1,嗣后又是另一个沉寂的间歇期,如此等等。按照我们的理论,在i1开始的兴奋与在A处开始的兴奋相融合。现在,让我们用一定量的时间eA先对A进行刺激,接着是一段沉寂的间歇期PA…2,这样一来,eA 和PA-2之和便等于光点以中等速度从A到Z通过所花的时间。那么,Z点上的兴奋会不会仍然与A点上开始的兴奋相融合呢?这一论点把我们从普通运动知觉引向断续运动知觉(perception of stroboscopic motion)。在最简单的一种断续实验中,我们先在A处呈示一个物体,然后,经过一段间歇期,又在Z处呈示另一物体,于是,相继地进行短时刺激的只有两个点,与两个邻近的锥状细胞相比,这两个点相隔更远。 
断续运动和实际运动 
    历史上,这个可见运动理论首先是由断续运动发展而来的「哈特曼(Hartmann),苛勒,1923年a〕,在该领域中,由肖尔茨(Scholz)开展的一项专门调查证明了这一点。两种相继过程之间的融合产生自它们之间的吸引。这种力量的实际存在为下列事实所表明:两根断续展现的线条比起两根特久展现的线条,前者的出现彼此之间相隔较短距离,而且当它们在最适宜的运动中被见到时,其距离的缩短量达到最大值。 
    按照这一理论,断续运动问题在于建立一些条件,在这些条件之下,两个(或两个以上)分离的兴奋之间的融合便发生了,或者,当吸引对被吸引过程的影响足以使它们移置时(尽管这种吸引还不够有力以产生融合),便会产生这种现象,即两者或两者中任何一者被看到沿该路径的部分运动(威特海默的双重和单一的部分运动)。以这种方式进行阐述,断续运动问题与实际运动问题没有什么不同,正如我们已经看到的那样,在实际运动中,分别开始的过程也一定会发生融合。但是,由于在实际运动中,相互作用过程之间的空间距离十分之小,以致产生了很强的吸引力,结果使其他因素与它们相比就显得较小,并难以证明,而这些其他因素在断续运动中发挥更加重要的作用,在那里,由于过程之间的较大距离,力量显得较弱了。关于这些其他的因素,我提及一下时间的决定因素,也就是说,展现的时间和间歇;我还想提及一下强度(或者,更好的提法是,图形和背景之间的梯度),也就是说被展现物体之间的距离,它们的大小和形状。我们将在后面对它们进行讨论。 
    现在,让我们回到理论上来。断续运动和“实际”运动是基本相似的,这是对该理论有利的一个有力论点。要对一个静止物体通过与另一个物体的相对移置而“诱导”运动(induced motion)进行解释,并不会引起任何新的困难。但是,还必须补充一点。邓克尔是通过将诱导物体相继地在两个不同位置予以展现,并将被诱导物体同时在两个相等位置上予以展现,来产生这种诱导运动的(p.224;参见图84,图中两次相继展现是以一个在另一个下方来表示的, 而实际上它们是这样安排的,即两个点是重合的)。在特定条件下,断续移置中的闭合物体可能实际上表现为静止的,而被闭合物体(由于相继展现在同样地方)却包含了整个运动。在这种情况下,两个空间上相距甚远的刺激的融合并不导致运动,而两个空间上一致的刺激的融合却导致了运动。然而,这样做没有任何困难,因为按照我们最一般的原理,运动有赖于两个或两个以上场物体之间的相对移置,而对这些场物体如何构造不作任何限制。邓克尔所提及的实验说明了实际运动和断续运动基本相似。 
似动速度:布朗实验 
    现在,让我们更为具体一些,不是去调查运动本身,而是去调查具体意义的运动。运动是有方向和速度的,两者反映在力学和经验中。如果我们考虑实际运动的知觉,那么,看来没有什么问题;人们期望,似动速度(apparent velocity)在心理学的可能范围内等于实际速度,或者简单地依赖实际速度。这里,所谓心理学的可能范围是指阈下和阈上之间的范围。然而,J.F.布朗(J.F.Brown)的著名研究表明,这种观点是错误的。我们目前暂不考虑由这个问题(实际速度被我们选作我们的标准)产生的困难,物体本身的速度,即距离刺激,或者物体的视网膜意像的速度,即接近刺激,都呈现出:只有当距离刺激与观察者处于同样距离时,这两样东西才会紧密一致;这是因为,与同一种距离速度相一致的视网膜速度随距离而成反比地变化。但是,暂且撇开这个问题不谈,布朗已经表明,一个被看作运动的物体,它的似动速度有赖于场和物体本身,也就是说,有赖于物体的大小和方向,而且,如前所述,也有赖于运动的方向(1928年,1931年)。在他的实验中,两种速度必须相互匹配。在两个光圈的孔径(diaphragrn aperture)后面,图形被看作处于运动状态,这种运动是由两个旋转的鼓引起的,在鼓的上面一卷卷有图形的白纸伸展着,以形成没有尽头的带子。在每一次实验时,标准带子的速度保持不变,然而,可变物体的速度则发生变化,直到观察者判断两种速度相等为止。看上去相等的两种客观速度的关系便成为对客观速度和主观速度之间的关系的一种测量。 
    为了给这一程序提供一种具体想法,我将详细地描述一个实验。标准物和可变物都位于同样的距离,除了带子和图形以外,场是同质的(黑暗的房间,从后面照明的旋转带子);标准物S的光圈孔径为15×5平方厘米;可变物B的光圈孔径为7.5×2.5平方厘米;标准物上面的图形是一些1.6厘米的圆,彼此之间的直径间距为4厘米,而可变物B上面的图形是一些0.8厘米的圆,彼此之间的直径间距为2厘米。总之,B的大小恰恰等于S大小的一半。在S中,速度用VS表示,是10厘米/秒,而在
返回目录 上一页 下一页 回到顶部 1 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!