按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
身的属性只有在意义上才被断定。例如,算术断定奇、偶、平方、立方的意义,几何学肯定不可通约、倾斜或接近的意义,但它们的存在为共同的本原以及已经证明的结论所证明。天文学的情况亦相同。
一切证明科学都涉及三个因素:它提出的主体(即它研究其本质属性的种);作为证明的根本基础的所谓的共同公理;第三是它肯定其各种含义的属性。不过,也没有什么阻止有些科学可以不管其中之一。例如,如果种的存在是明显的,就可以略而不论它的存在(因为数的存在不像热和冷那样明显)。或者,如果属性的意义十分清楚,就可以略而不论。正如就共同本原而言,“相等的部分从相等物中减去,剩余部分仍相等”的意义不用断定一样,因为它众所周知。尽管如此,主体、对象、证明的基础这自然的三重划分是有效的。
自身必然真实并且必定被认为是如此的东西不是假设也不是预定。因为证明像三段论一样,所涉及的不是外在的而是内在的逻各斯。反对外在的逻各斯总是可能的,但要反对内在的逻各斯却不总是可能的。一个教师断定一个命题可证明却没有证明它,如果学生接受了它,那它就是一个假设一一不是一般的,而仅是相对于学生而言的假设。如果学生对它没有观念或只具有相反的观念,那么这所作的断定即是预定,这就是假设和预定之间的区别。后者与学生的观念相反,或者是被断定是可证明的,但未经证明而使用。
定义不是假设(因为它们对存在和不存在都不作断定),假设在命题中有地位,定义则只需要被理解。它不是假设,除非倾听被认为是一类假设。假设是由这样的断定所组成的:由于它们的存在,结论便从此而推得。因而,几何学家的假设并不像有些人所坚持认为的那样是虚假的。他们说人们不应使用虚假的东西,几何学家在他所划的线没有一尺长时却断定它为一尺长,不直时断定为直,所以是犯了错误。几何学家并没有从他自己所提到的那条特殊线的存在中推断出什么,他只是从通过图示而阐明的事实中推出自己的结论。进一步,一切预定和假设要么是普遍的,要么是特殊的,而定义则既不是普遍的也不是特殊的。
【 11 】为了使证明可能,并不必然需要形式或与“多”相分离的“一”的存在,但陈述一个众多主体的谓项应当正确却是必然的,否则就会没有普遍的词项。如果没有普遍词项,那就没有中词,也就没有证明。所以在众多特殊的事物之上,必定存在着一个自身等同的事物,但却不与它们分有同一名字。
没有一个证明使用肯定和否定同时都不可的原则,除非它所要证明的结论也是这种形式。大词肯定中词是真实的,否定中词是不真实的,证明为这样的断定所影响,把对矛盾面的否定加到中词上或者加到小词上并没有什么区别。如果我们断定,称谓“人”是真实的东西,称谓“动物”也是真实的——只要“人是动物”是真实的,“人不是动物”是不真实的。那么,即使用“非人”来称谓“动物”也同样是真实的——那么,把“加里亚斯”叫做动物是真实的,即使把“非加里亚斯”叫做动物也是真实的,但把它叫做“非动物”就不真实了。原因在于大词不仅述说中词而且也述说另一个词项或别的词项,因为它具有广泛的含义。所以,即使中词既是它自身也是它的矛盾面,结论仍不受影响。
“每个谓项的肯定或否定必有一真”这一法则通过归谬法被使用在证明中。它并不总是具有普遍性,而仅是充分的,即与种相关。所谓“与种相关”,我的意思是,与作为所讨论的证明主体的种相关,如我们在上面所论述的那样。
所有的科学互相间都使用共同原则(我所谓“共同原则”是指他们用来进行证明的东西,不是他们在对它导出证明的主体,也不是他们证明的联系),辩证法分有一切其他科学的原则,试图普遍地证明共同原则的科学亦相同,例如,每个谓项的肯定或否定必有一真,把相等部分从相等物中取走,剩余部分仍相等,等等。但根据这定义,辩证法就没有领域,也不涉及任何一类对象。否则它就不会通过疑问而进展了。疑问是不可能证明的,因为对相反的事实不可能作出同样结果的证明。这已在关于三段论的著作中指出过了。
【 12 】如若一个三段论的问题与陈述对立面之一方的命题相同,而每门科学都有它自己三段论所依据的命题,那么必定存在着科学的问题,它与由此可以推得适合于科学的结论的前提相应。很显然,并不是每个问题都是几何学的(或医学的,其他科学亦相同),只有其根据与证明几何定理或任何在其证明中所使用的公理与几何学相同的科学定理(如光学)相应的问题才是,其他科学亦相同。几何学家必须根据几何学的本原和结论对这些问题作出解释;但作为一个几何学家,他没有必要对本原作出解释。其他科学的情况亦与此相同。
因而,我们不能向每个专门家问任何问题,专门家也不会回答向他提出的与每个给定的主题相关的一切东西。他只回答属于他自己的学科范围内的问题。一个人作为几何学家跟一个几何学家相辩论,如果他通过从几何学本原中所证明的论点来辩论,那么他显然是适当的,否则就是不适当的。如果他的辩论不恰当,那他显然就不能驳倒一个几何学家,除非出于偶然。所以,不应该在一群不懂几何学的人中讨论几何学,因为他们觉察不出不可靠的论证。这种情况也适用于其他一切科学。
几何问题存在着,那么非几何问题也存在吗?在任何科学(例如几何学)中,是一种什么样的无知仍然提出几何学的问题呢?从虚假的前提中推出的结论,或者虽然虚假却仍是几何学的推论,是无知的结论吗?或者它是一个从一门不同的学科推得的论断吗?例如,音乐问题是与几何学相关的非几何学问题,而设想平行线相交在一种意义上是几何学的,但在另一种意义上却是非几何学的。“非几何学的”与“非节奏的”一样有两种含义。一件事物是非几何学的,在一种意义上是因为它完全缺乏那种性质,在另一种意义上是它拥有这种性质但极其微小。它是在后一种意义上的无知,即从与科学知识相反的前提中推论而得的无知。在数学中,形式的谬误没有这样普遍,因为产生歧义的总是中词,一个词项作一中词的全体的谓项,中词又依次作另一词项的全体谓项,但是谓项并没有说明所有。在数学中,中词可以被智慧之眼清楚地看到,而在辩证的论证中歧义往往容易被忽视。“每个圆都是一个形状吗?”如果人们画一个圆,那么答案是很明显的,“叙事诗是圆吗?”显然不是。
如果某一证明具有归纳的小前提,我们就不应对它提出异议,正如一个只适用于一种情况的前提不是真实前提一样(因为它不适合所有情况,而三段论是从普遍判断进展的),这种性质的异议不是真正的异议。前提与异议是相同的,任何被提出来的异议都可以变成一个前提,要么是证明的,要么是辩证的。
我们发现有些人通过把握两个词项的后件而错误地作论证。例如卡纽斯坚持认为火是以几何级数扩展的,根据是火和这类级数都增长得极迅速。在这种条件下没有三段论。只有当最迅速的增长隐含着几何比例,火在其运动中隐含着最迅速的增长率时才行。有时不可能从断定中获得一个结论,有时它是可能的,但进展的方法却被忽略了。
如果不可能从虚假的前提证明一个真实的结论,那么分析就会十分容易,因为结论与前提必然是交互的。让 A 成为一个真正的事实,它的真实性包含着其他一些我知道是真的事物(例如 B )的真实性,那么,从后者我就可以证明 A 确实是真实存在的。交互现象在数学中更加普遍,因为数学从不具有偶性(这是它不同于辩证推理的另一方面),它只具有定义。
科学的增长不是由于中词的插入而是由于大小词的附加,例如, A 是 B 的谓项, B 是 C 的谓项, C 是 D 的谓项,由此无穷后推。它也可以倾向扩展,例如, A 既是 C 又是 E 的谓项。举个例子说, A 是(确定的或不确定的)数, B 是确定的奇数, C 是特殊的奇数,那么 A 是 C 的谓项。再者, D 是确定的偶数, E 是一个特殊的偶数,那么 A 是 E 的谓项。
【 13 】在同一门科学中,对事物的知识和对事物原因的知识在下列不同的条件下是不同的:( 1 )如果结论不是从直接的前提推得(因为这样一来,第一因(近因)不包含在它们之中,而对原因的知识是依赖第一因的)。( 2 )虽然结论是从直接前提推得,但它却不是从原因而是从两个可转换的词项中知道得更清楚的那个词项中推得。因为在两个可以转换的谓项中,不是原因的那一个可能知道得更清楚,所以证明将从此而进展。例如,“行星是相近的,因为它们不闪烁”这样一个证明。让 C 表示“行星”, B 表示“不闪烁”, A 表示“相近”,那么, B 作为 C 的谓项是真实的,因为行星不闪烁,但 A 陈述 B 同样是真的,因为不闪烁的东西是接近的(这已经通过归纳或感官知觉而确定),这样, A 必定属于 C ,从而证明了行星是相近的。因此这个三段论证明的不是原因而是事实。因为不是因为行星不闪烁,所以它们相近,而是因为它们相近,所以不闪烁。不过,借助大词证明中词是可能的,所以证明可以揭示根据。例如,让 C 表示“行星”, B 表示“相近”, A 表示“不闪烁”,那么 B 属于 C ,并且 A 属于 B ,所以 A 也属于 C 。这个三段论揭示了根据,因为第一因已被断定了。再如,月亮由于它的盈亏被证明是球形的,如果展现出这类盈亏的事