按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
式的却也生成了。那么,明显地,产生上述事物那样的原因,
正也可能是他们所说具有意式诸事物之存在〈 “ 现是 ” 〉与其
生成〈 “ 将是 ” 〉的原因,而事物也就可以不靠通式而靠这些
原因以获得其存在。关于意式,这可能照这样,或用更抽象
而精确的观点,汇集许多类此的反驳。
章 六
我们既已讨论过有关意式诸问题,这该可以再度考虑到
那些人主张以数为可分离本体,并为事物之第一原因所发生
的后果。假如数为一个实是,按照有些人的主张其本体就只
是数而没有别的,跟着就应得有〈这样的各数系〉,(甲)数
可以或是(子)第一,第二,一个挨次于一个的实是,每一
数各异其品种 —— 这样的数全无例外地,每一数各不能相
通,或是(丑)它们一个一个是无例外地挨次的数,而任何
的数象他们所说的数学〈算术〉之数一样,都可与任何它数
相通;在数学之数中,各数的单位互不相异。或是(寅)其
中有些单位可相通,有些不能相通;例如2,假设为第一个挨
次于1,于是挨次为3,以及其余,每一数中的单位均可互通,
例如第一个2中的各单位可互通,第一个3中的以及其余各
数中的各单位也如此;但那 “ 绝对2 ” 〈本二〉中的单位就不
能与绝对3〈本三〉中的单位互通,其余的顺序各数也相似。
数学之数是这么计点的 —— 1,2(这由另一个1接上前一个
1组成),与3(这由再一个1,接上前两个1组成),余数相
似;而意式之数则是这么计点的 —— 在1以后跟着一个分明
的2,这不包括前一个数在内,再跟着的3也不包括上一个2,
余数相似。或是这样,(乙)数的一类象我们最先说明的那一
类,另一是象数学家所说的那一类,我们最后所说的当是第
三类。
又,各类数系,必须或是可分离于事物,或不可分离而
存在于视觉对象之中,(可是这不象我们先曾考虑过的方
式,而只是这样的意义,视觉对象由存在其中的数所组
成) —— 或是其一类如是,另一类不如是,或是各类都如是
或都不如是。
这些必然是列数所仅可有的方式。数论派以一为万物之
原始,万物之本体,万物之要素,而列数皆由一与另一些事
物所合成,他们所述数系悉不出于上述各类别;只是其中一
切数全都不能互通的那一类数系还没有人主张过。这样宜属
合理;除了上述可能诸方式外,不得再有旁的数系。有些人
说两类数系都有,其中先后各数为品种有别者同于意式,数
学之数则异于意式亦异于可感觉事物,而两类数系均可由可
感觉事物分离;另一些人说只有数学之数存在,而这数离
于可感觉事物,为诸实是之原始。毕达哥拉斯学派也相信数
系只数学之数这一类;但他们认为数不脱离可感觉事物,而
可感觉事物则为数所组成。他们用数构成了全宇宙,他们所
应用的数并非抽象单位;他们假定数有空间量度。但是第一
个1如何能构成量度,这个他们似乎没法说明。
另一个思想家说,只有通式之数即第一类数系存在,另
一些又说通式之数便是数学之数,两者相同。
线,面,体的例相似。有些人意谓事物作为数理对象与
其作为意式相异;在意见与此相反的各家中,有些人只以数
学方式谈数理对象 —— 这些人不以意式为数,也未言及意式
存在;另有些人不照数学方式说数学对象,他们说并不是每
一空间量度均可区分为计度,也不能任意取两个单位来造成
2,所有主张万物原理与元素皆出于 “ 1 ” 的人,除了毕达哥
拉斯学派以外,都认为数是抽象的单位所组成;但如上曾述
及,他们认为数是量度。数有多少类方式这该已叙述清楚,
别无遗漏了;所有这些主张均非切实,而其中有些想法比别
一些更为虚幻。
章 七
于是让我们先研究诸单位可否相通,倘可相通,则在我
们前曾辩析的两方式中应取那一方式。 ⑦ 这可能任何单位均
不与任何单位相通,这也可能 “ 本2 ” 与 “ 本3 ” 中的各单位
不相通,一般地在每一意式数中各单位是不相通于其它意式
数中各单位的。现在(一)假如所有单位均无异而可相通,我
们所得为数学之数 —— 数就只一个系列,意式不能是这样的
数。 “ 人意式 ” 与 “ 动物意式 ” 或其它任何意式怎能成为这样
的数?每一事物各有一个意式,例如人有 “ 人本 ” ,动物有
“ 动物本 ” ;但相似而未分化的数无限的众多,任何个别的3都
得象其它诸3一样作为 “ 人本 ” 。然而意式若不能是数,它就
全不能存在。意式将由何原理衍生?由1与未定之2衍生数,
这些就只是数的原理与要素,意式之于数不能列为先于或后
于。但,(二)假如诸单位为不相通,任何数均不相通于任
何数,这样的数不能成为数学之数;因为数学之数由未分化
的诸单位组成,这性质也证明为切于实际。这也不能成为意
式数。这样的数系,2不会是 “ 一与未定之两 ” 所生成的第一
个数,其它各数也不能有 “ 2,3,4 ……” 的串联顺序,因为
不管是否象意式论的初创者所说,意式2中的诸单位从 “ 不
等 ” 中同时衍生( “ 不等 ” 在被平衡时列数就因而生成)或
从别的方式衍生, —— 若其中之一为先于另一,这便将先于
由所组合的2;倘有某一物先于另一物,则两者之综和将是先
于另一而后于某一。
又,因为 “ 本1 ” 为第一,于是在 “ 本1 ” 之后有一个个
别之1先于其它诸1,再一个个别之1,紧接于那前一个1之
数中各单位的。现在(一)假如所有单位均无异而可相通,我
们所得为数学之数 —— 数就只一个系列,意式不能是这样的
数。 “ 人意式 ” 与 “ 动物意式 ” 或其它任何意式怎能成为这样
的数?每一事物各有一个意式,例如人有 “ 人本 ” ,动物有
“ 动物本 ” ;但相似而未分化的数无限的众多,任何个别的3都
得象其它诸3一样作为 “ 人本 ” 。然而意式若不能是数,它就
全不能存在。意式将由何原理衍生?由1与未定之2衍生数,
这些就只是数的原理与要素,意式之于数不能列为先于或后
于。但,(二)假如诸单位为不相通,任何数均不相通于任
何数,这样的数不能成为数学之数;因为数学之数由未分化
的诸单位组成,这性质也证明为切于实际。这也不能成为意
式数。这样的数系,2不会是 “ 一与未定之两 ” 所生成的第一
个数,其它各数也不能有 “ 2,3,4 ……” 的串联顺序,因为
不管是否象意式论的初创者所说,意式2中的诸单位从 “ 不
等 ” 中同时衍生( “ 不等 ” 在被平衡时列数就因而生成)或
从别的方式衍生, —— 若其中之一为先于另一,这便将先于
由所组合的2;倘有某一物先于另一物,则两者之综和将是先
于另一而后于某一。
又,因为 “ 本1 ” 为第一,于是在 “ 本1 ” 之后有一个个
别之1先于其它诸1,再一个个别之1,紧接于那前一个1之
后实为第三个1,而后于原1者两个顺次, —— 这样诸单位
必是先于照它们所点到的数序;例如在2中,已有第三单位
先3而存在,第四第五单位已在3中,先于4与5两数而存
在。现在这些思想家固然都没有说过诸单位是这样的完全不
相通,但照他们的原理推演起来,情况便是这样,虽则实际
上这是不可能的。因为这是合理的,假如有第一单位或第一
个1,诸单位应有先于与后于之分,假如有一个第一个2,则
诸2也应有先于与后于之分;在第一之后这必须会有第二也
是合理的,如有第二,也就得有第三,其余顺序相接,(同时
作两样叙述,以意式之1为第一,将另一单位次之其后为第
一个1,又说2是次于意式之1以后为第一个2,这是不可能
的),但他们制造了第一单位或第一个1,却不再有第二个1
与第三个1,他们制造了第一个2,却不再制造第二个2与第
三个2。
假如所有单位均不相通,这也清楚地不可能有 “ 本2 ” 与
“ 本3 ” ;它数亦然。因为无论单位是未分化的或是每个都各不
相同,数必须以加法来点计,例如2是在1上加1,3由2上
加1,4亦相似。这样,数不能依照他们制数的方式由 “ 两 ”
与 “ 一 ” 来创造;〈依照加法〉2成为3的部分,3成为4的
部分,挨次各数亦然,然而他们却说4由第一个2与那未定
之2生成, —— 这样两个2的产物有别于本2;如其不然,
本2将为4的一个部分,而加上另一个2。相似地2将由 “ 本
1 ” 加上另一个1组成;若然如此,则其另一要素就不能是
“ 未定之2 ” ;因为这另一要素应创造另一个单位,而不该象未
定之二那样创造一个已定之2。
又,在本3与本2之外怎能有别的诸3与诸2?它们又怎
样由先于与后于的诸单位来组成?所有这些都是荒唐的寓言,
“ 原2 ” 〈第一个2〉与 “ 本3 ” 〈绝对3〉均不能成立。可是,
若以 “ 一与未定之两 ” 为之要素,则这些就都该存在。这样
的结果倘是不可能的,那么要将这些作为创造原理就也不可
能。
于是,假如诸单位品种各各不同,这些和类乎这些的结
果必然跟着发生。但(三)假如只是每一数中的各单