按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
档牟钜旆⑸夂癫煌崾姑恳桓霾环值氖账醺饕欤蚨鹆怂侥谟αΓ涞牟糠志哂薪细叩那北涑ざ龋鹊牟糠制涑ざ冉系停嗜鹊牟糠志突嵩诶涞牟糠质账鹾笮纬扇鹊阍斐刹糠莸谋湫危湫尾糠种慷龋嬷湫味鹊脑黾佣岣撸詈笤俨荒芙徊奖湫问保诓啃纬赡持殖痰牡杂αΓ踔了苄杂Ρ洌礊槟谟αΓ擞α负蹩筛叽镉肟估慷鹊戎担磺矣伸度魏瓮庠诘脑蚴咕植坑αΤ估慷鹊氖焙颍死嘀苋菀滓蚨斐善屏眩却硎窍谟αψ钪匾囊恢址椒ǎ饕绦蚴巧呶露龋钏兄ㄔ诜浅>榷郝那榭鱿拢尤燃袄淙础!
退火温度的高低,主要视铸件的组成部分,以及必须消的强度量而定,甚至必须考虑组织的可能变化,最适合的退火温度可大致归纳如下:对非合金性的铸铁而言,约在500~575℃之间,对於低筋性的铸铁而言,大约在550~600℃之间,对高合金铸铁而言则在600~650℃之间,炉内的温度分布,必须儘可能的均匀以避免存在温度梯度,不论任何情况下,用於退火的火焰或热气体,不能直接喷向铸件,以避免在加热的时候,薄壁的部分在次引起热应力,而增加残留应力的存在量,进而引起破裂,在到达退火温度后的第一小时内大部分的内应力均会消除,则视铸件的厚薄而定,一般而言铸件厚度每增加25mm必须增加一小时的退火时间。
铸铁之软化退火处理
灰铸铁与球状石墨铸铁软化退火,事实上是一种针对碳化物分解的热处理,对非合金性及低合金铸铁而言,铁碳所形成的碳化物并非是一种稳定相,在高温中经过一段足够长的时间,碳化物分解成為石墨、肥力铁或沃斯田铁,此类分解过程就是一般所谓的软化热处理,同时也是製造展性铸铁的主要程序,灰铸铁裡的碳化物主要分两类,第一类是在凝固过程中形成的共晶碳化物(Eutectic Carbide),一般称之為自由碳化物(Free Carbide)。软化处理主要分成两个步骤,及第一段石墨化及第二段石墨化,共晶碳化物之分解為第一段石墨化,波来铁分解為肥力铁与石墨之步骤為第二段石墨化。图2…2所示為软化处理时间…温度曲线,如果波来铁分解时予以非常缓慢的冷却,则同时可达到弛力退火的效果。
第一段石墨化处理的目的在於消除共晶雪明碳铁,因此当灰铸铁或者球状石墨铸铁,再凝固过程中,石墨形成不完全,大部分都会形成共晶雪明碳铁,在铸件的角落和锐边处,由於冷却速率较快,或以金属模铸造时激冷效果均会產生共晶雪明碳铁,另当硅的含量不够,或接种的处理不良都会產生硬点,或形成碳化物,如果铸铁内具碳化物的稳定元素,儒Cr、V或太高之锰含量时,也会形成相同的结果,如果是由於成分的配合不恰当,晶界形成。
十、回火介绍
(1)钢的回火
回火是将淬火钢重新加热到A1以下某一温度,保温,然后冷却的热处理工艺。回火决定了钢在使用状态的组织和性能。回火的目的是为了稳定组织,消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,满足各种工件不同的性能要求。
根据回火温度可将钢的回火分为三类。
1、低温回火(150~250℃)
低温回火后的组织为回火马氏体,它是由过饱和的α相和与其共格的ε…Fe2。4C组成。其形态仍保留淬火马氏体的片状或板条状。
低温回火的主要目的是保持淬火马氏体的高硬度(58~62HRC)和高耐磨性,降低淬火应力和脆性。它主要用于各种高碳钢的刃具、量具、冷冲模具、滚动轴承和渗碳工件。
2、中温回火(350~500℃)
中温回火后的组织为回火托氏体,它是由尚未发生再结晶的针状铁素体和弥散分布的极细小的片状或粒状渗碳体组成,其形态仍为淬火马氏体的片状或板条状。
中温回火的主要目的是为了获得高的屈强比,高的弹性极限,高的韧性,回火托氏体的硬度为35~45HRC。中温回火主要用于处理各种弹簧、锻模。
3、高温回火(500~650℃)
高温回火后的组织为回火索氏体,它是由已再结晶的铁素体和均匀分布的细粒状渗碳体组成。由于铁素体发生了再结晶失去了原来淬火马氏体的片状或板条状形态,呈现为多边形颗粒状,同时渗碳体聚集长大。
(2)回火常见问题和解决技巧
100℃热水回火之优点
低温回火常使用180℃至200℃左右来回火,使用油煮回火。其实若使用100℃的热水来进行回火,会有许多优点,包括:100℃的回火可以减少磨裂的发生;100℃回火可使工件硬度稍增,改善耐磨性;100℃的热水回火可降低急速加热所產生裂痕的机会;进行深冷处理时,降低工件发生深冷裂痕的机率,对残留沃斯田体有缓衝作用,增加材料强韧性;工件表面不会產生油焦,表面硬度稍低,适合磨床研磨加工,亦不会產生油煮过热乾烧之现象。
二次硬化之高温回火处理
对於工具钢而言,残留应力与残留沃斯田体均对钢材有著不良的影响,浴消除之就要进行高温回火处理或低温回火。高温回火处理会有二次硬化现象,以SKD11而言,530℃回火所得钢材硬度较200℃低温回火稍低,但耐热性佳,不会產生时效变形,且能改善钢材耐热性,更可防止放电加工之加工变形,益处甚多。
在300℃左右进行回火处理,為何会產生脆化现象?
部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。二次硬化工具钢当加热至500℃~600℃之间时才会引起分解,在300℃并不会引起残留沃斯田体的分解,故无300℃脆化的现象產生。
回火產生之回火裂痕
以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而產生之裂痕,称之為回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会產生。此类钢材在第一次淬火时產生第一次麻田散体变态,回火时因淬火產生第二次麻田散体变态(残留沃斯田体变态成麻田散体),而產生裂痕。因此要防止回火裂痕,最好是自回火温度作徐徐冷却,同时淬火再回火的作业中,亦应避免提早提出回火再急冷的热处理方式。
回火產生之回火脆性
可分為300℃脆性及回火徐冷脆性两种。所谓300℃脆性係指部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。所谓回火徐冷脆性係指自回火温度(500℃~600℃)徐冷时出现之脆性,Ni…Cr钢颇為显著。回火徐冷脆性,可自回火温度急冷加以防止,根据多种实验结果显示,机械构造用合金钢材,自回火温度施行空冷,以10℃/min以上的冷却速率,就不会產生回火徐冷脆性。
高週波淬火常见之问题
高週波淬火处理常见的缺陷有淬火裂痕、软点及剥离三项。高週波淬火最忌讳加热不均匀而產生局部区域的过热现象,诸如工件锐角部位、键槽部位、孔之周围等均十分容易引起过热,而导致淬火裂痕的发生,上述情形可藉由填充铜片加以降低淬火裂痕发生的可能性。另外高週波淬火工件在淬火过程不均匀,会引起工件表面硬度低的缺点,称之為软点,此现象係由於高週波淬火温度不均匀、喷水孔阻塞或孔的大小与数目不当所致。第三种会產生的缺失是表面剥离现象,主要原因為截面的硬度变化量大或硬化层太浅,因此常用预热的方式来加深硬化层,可有效防止剥离现象。
不銹钢為何不能在500℃至650℃间进行回火处理?
大部分的不銹钢在固溶化处理后,若在475℃至500℃之间长时间持温时,会產生硬度加大、脆性亦大增的现象,此称之為475℃脆化,主要原因有多种说法,包括相分解、晶界上有含铬碳化物的析出及Fe…Cr化合物形成等,使得常温韧性大减,且耐蚀性亦甚差,一般不銹钢的热处理应避免常时间持温在这个温度范围。另外在600℃至700℃之间长时间持温,会產生s相的析出,此s相是Fe…Cr金属间化合物,不但质地硬且脆,还会将钢材内部的铬元素大量耗尽,使不銹钢的耐蚀性与韧性均降低。
為何会產生回火变形?
会產生回火变形的主要原因為回火淬火之际產生的残留硬力或组织变化导致,亦即因回火使张应力消除而收缩、压应力的消除而膨胀,包括回火初期析出e碳化物会有若干收缩、雪明碳铁凝聚过程会大量收缩、残留沃斯田铁变态成麻田散铁会膨胀、残留沃斯田铁变态成变韧铁会膨胀等,导致回火后工件的变形。防止的方法包括:(1)实施加压回火处理;(2)利用热浴或空气淬火等减少残留应力;(3)用机械加工方式矫正及(4)预留变形量等方式。
回火淬性的种类
1、270℃~350℃脆化:又称為低温回火淬性,大多发生在碳钢及低合金钢。
2、400℃~550℃脆化:通常构造用合金钢再此温度范围易產生脆化现象。
3、475℃脆化:特别指Cr含量超过13%的肥粒铁系不銹钢,在400℃至550℃间施以回火处理时,產生硬度增加而脆化的现象,在475℃左右特别显著。
4、500℃~570℃脆化:常见於加工工具钢、高速钢等材料,在此温度会析出碳化物,造成二次硬化,但也会导致脆性的提高。
(3)合金元素对回火转变的影响
淬火合金钢进行回火时,其组织转变与碳钢相似。但由于合金元素的加入,使其在回火转变时具有如下特点:
1、提高淬火钢的回火稳定性 淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。
2、产生二次硬化 淬火合金钢在500~600℃温度范围回火时,硬度升高的现象称为二次硬化。
3、产生回火脆性 淬